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In an earlier work we predicted the existence of a neutral triplet collective mode in undoped graphene and
graphite �G. Baskaran and S. A. Jafari, Phys. Rev. Lett. 89, 016402 �2002��. In this work we study a phenom-
enological Hamiltonian describing the interaction of tight-binding electrons on honeycomb lattice with such a
dispersive neutral triplet boson. Our Hamiltonian is a generalization of the Holstein polaron problem to the
case of triplet bosons with nontrivial dispersion all over the Brillouin zone. This collective mode constitutes an
important excitation branch which can contribute to the decay rate of the electronic excitations. The presence
of such collective mode modifies the spectral properties of electrons in graphite and undoped graphene. In
particular such collective mode, as will be shown in this paper, can account for some parts of the missing decay
rate in a time-domain measurement of the excitation lifetime in graphite.
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I. INTRODUCTION

Recently Novoselov et al.1 was able to fabricate graphene,
a single atomic layer of graphite. This discovery has brought
graphene to the center of attention of many researchers.2 The
fundamental difference of the electronic spectrum of
graphene with respect to the usual metals is the existence of
Fermi points around which an effective Dirac theory de-
scribes the electronic states.3 The suspended graphene can
now be fabricated in which the effects of impurity and sub-
strate are substantially reduced and one can approach the
ballistic limit of transport with Dirac electrons.4

Starting from a single layer of graphene, and adding fur-
ther layers, one obtains graphene multilayers. For few layers
the even-odd effects due to quantum confinement arise.2

However, as the number of layers exceeds �10, one ap-
proaches the bulk limit, or graphite. The Dirac part of the
energy dispersion of graphite is qualitatively similar to
graphene.5 The only important difference between the elec-
tronic states of graphite and graphene is the presence of
small pockets up to �40 meV, beyond which the Dirac de-
scription applies to the low-energy physics of graphite as
well.6,7 Ignoring such pockets which originate from the weak
interlayer coupling, the electronic structure of bulk graphite
can be approximately described by a tight-binding model on
a two-dimensional �2D� honeycomb lattice. In our approach
both highly oriented pyrolitic graphite �HOPG� and undoped
graphene are treated within this model. The calculations of
this paper are aimed to explain the lifetime anomaly in
HOPG but apply to undoped graphene as well.

The presence of Dirac points makes the nature of particle-
hole excitations in graphene drastically different from the
system possessing extended Fermi surface. Due to such
conelike spectrum, there will be a region below the particle-
hole continuum, where no particle-hole pairs can exist. Such
a “window” does not exist in usual metals.8 A simple
random-phase-approximation �RPA� analysis shows that the
presence of such window below the particle-hole continuum
provides a unique opportunity for the existence of a triplet
bound state of electron-hole excitation.8 An intuitive way to

understand such a triplet electron-hole bound state is to view
the semimetallic graphene from the semiconducting side.
From this point of view, such collective excitation can be
regarded as the analog of triplet excitons.9

In this work we focus on the time-domain lifetime mea-
surements performed on HOPG samples which correspond to
the undoped graphite. The time resolved photoemission spec-
troscopy �TRPES� made by Moos et al.10 on HOPG was
employed to measure the decay rate of quasiparticles �QPs�
in graphite. There are two salient features of the TRPES
experiment reported by Moos et al.10 which for convenience
has been included in Fig. 1. �i� The plateau in the energy
range 1–2 eV is already a marked deviation from the Fermi-
liquid prediction which was qualitatively explained in Refs.
10 and 11, in terms of the peculiar form of the graphite
dispersion near the saddle point. Such a plateau has been
reported in the carrier lifetime of doped graphene in angular
resolved photoemission spectroscopy �ARPES� experiments
as well12 which can be understood in terms of a similar G0W
type of treatment.13 The presence of plateau can be justified
in terms of kinematic constraints for the decay of quasipar-
ticles from the M point.10 �ii� The second important observa-
tion of the above TRPES experiment was that the decay rate
of excitations in the whole range of energies over which the
measurement was performed was larger than the ab initio
calculation of Ref. 11. This clearly means that there should
be another decay channel for quasiparticles, especially in the
energy range 1–2 eV. In the whole measurement range the
experimentally observed decay rate is almost a factor of 2
larger than the GW calculation.

Obviously the phonons cease to exist beyond 0.2 eV, and
hence cannot be responsible for the missing decay channel in
the energies reported in Ref. 10. Moreover, both in HOPG
and undoped graphene, there are no plasmons
whatsoever.14,15 Therefore we believe that this lifetime ex-
periment already points to the existence of an unnoticed
bosonic branch of neutral excitations.8,9 There are also other
evidences based on the Fermi velocity renormalization mea-
surements. If one appeals to electron-phonon coupling to ex-
plain the experimentally observed reduction in the Fermi ve-
locity vF with respect to the band-structure prediction, one
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has to use an electron-phonon coupling which is almost �5
times larger than the density-functional theory estimates.16

Therefore it seems that the phonons are not enough to ac-
count for about 20% Fermi velocity renormalization.16 The
second experimental hint for the existence of such a bosonic
mode is the remarkable observation of the Bose metal-
insulator transition tuned by magnetic field17 in graphite18

and graphene.19

Based on the above evidences, in this paper we employ a
triplet bosonic mode predicted in Ref. 8 with a gapless dis-
persion of up to �max�2.1 eV. Our model is a natural gen-
eralization of the polaron problem, with spin-flip processes
included. We generalize the momentum average �MA� ap-
proximation developed in the context of the polaron problem
by Berciu20 to take into account the spin-flip vertices as well
as the nontrivial dispersion in the spectrum of bosons. First
we introduce our model and the MA method. Next we apply
the MA approximation to discuss the coupling of a triplet
boson to electronic states of graphene quasiparticles. The
details of generalization of MA approximation to spin-flip
processes are discussed in the Appendix.

II. MODEL AND METHOD

We start with Hamiltonian �1� describing the tight-binding
electrons on the honeycomb lattice �first term�, along with
dispersive triplet bosons �second term� and the interaction
between electrons and bosons �third term�,

H = �
k�,�=↑,↓

�k�ck�,�
† ck�,� + �

q� ,m=�1

�q�Sq� ,m
† Sq� ,m

+ g �
k�,q� ,m,m�,�,��

�Sq� ,m
† + S−q� ,m��ck�−q� ,�

† ck�,��, �1�

where �k� = � t�1+cos��3ky /2�cos�kx /2�+4 cos2�kx /2� is the
spectrum of fermions for �conduction or valance� band and
�q� describes the dispersion of spin-1 bosons.8 Here ck�,�

† �ck�,��
is the creation �annihilation� operator for fermions with mo-
mentum k� and spin �= ↑ ,↓ in either of the valence or con-
duction bands, while Sq� ,m

† ,Sq� ,m are the ladder operator for
spin-1 bosons with momentum q� and magnetic quantum
numbers m= �1,0. In this Hamiltonian, g is the coupling
strength and describes how strongly the exchange of triplet
excitons takes place among the electrons. Estimates of a
similar coupling in doped solid C60 suggests g�0.3 for those
systems.21 The presence of such term favors singlet pairing
under suitable conditions.21,22

The interaction term of Hamiltonian �1� describes both
spin-flip �m= �1� as well as non-spin-flip �m=0� processes.
Since non-spin-flip processes can exist in presence of spin-0
bosons as well, to isolate the contribution of the spin-flip
processes, we focus on m= �1 terms only. In this sector,
requiring Hamiltonian �1� to be Hermitian gives rise to the
following restrictions on the possible values of m ,m� ,� ,��:

m = 1�− 1� → m� = − 1�1� → � = ↓�↑� → �� = ↑�↓� .

We use MA approximation to calculate the Green’s func-
tion and self-energy of the system20,23 which yields various
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FIG. 1. �Color online� Quasiparticle decay rate in HOPG graphite. The triangles indicate TRPES measurements in Ref. 10, the open
circles are the ab initio GW calculation of Ref. 11. Filled circles and dashed lines show the total decay rate in the presence of a new decay
mechanism caused by triplet bosons for the electron-boson couplings g=0.25,0.3. In this calculation we have taken �max=2.1 eV. See the
text for explanation.
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physical quantities such as the decay rate. Comparison of
MA and its descendants �e.g., MA�1�, MA�2�, etc.� with
other methods demonstrated that this method is accurate for
the entire spectrum �both low and high energy� and for all
coupling strengths and in all dimensions.23 This approxima-
tion was also used successfully for the analysis of the effects
of ripples on the graphene sheet.24 In the following, we use
the MA�1� approximation, the details of which for the case
of dispersive mode with spin-1 are derived in the Appendix.

The single electron Green’s function can be written as

G�,��k�,�� = − i�����0	ck�,�eiH�ck�,�
† 	0
 , �2�

where � ,� are the spin indices and 	0
 is the vacuum state.
In the absence of bosons the free propagator is

G0�k�,�� =
1

� − �k� + i�
. �3�

To take into account the coupling to triplet bosons, we use
the equation of motion for G�,��k� ,�� to obtain �see the Ap-
pendix�

G�,��k�,�� = G0�k�,���	�,� + g �
q�1,m1

F1
�,−��k�,q�1,m1;��� ,

�4�

where

F1
�,−��k�,q�1,m1;�� = �0	ck�,�

1

� − Ĥ + i�
ck�−q� ,−�

† Sq� ,m1

† 	0
 . �5�

Here, F1 is the amplitude for the process in which the initial
state contains a fermion and a boson, and the final states
contain only a fermion with opposite spin. Hence, physically
it corresponds to the amplitude of annihilating one triplet
�
m= �1� boson. Applying again the equation of motion to
F1 generates hierarchy of equations containing amplitudes
with multiboson states,

F1
�,−��k�,q�1,m1,��

= G0�k� − q�1,� − �q�1
��g2 + �

q�2,m2

F2
�,��k�,q�1,q�2,m1,m2;��� .

�6�

Although each internal vertex may contain spin-flip scat-
terings, since Hamiltonian �1� preserves the spin, the incom-
ing and outgoing fermions must have the same spin. Hence
the Green’s function �2� must be diagonal with respect to the
spin indices. The rigorous proof of this is given in the Ap-
pendix. Also, by the Dyson equation, the self-energy is also
diagonal with respect to spin indices,

G�,��k�,�� = �� − �k� − ��,��k�,�� + i��−1. �7�

The self-energy ��,��k� ,�� in the MA�1� approximation is
given by �see the Appendix�

��,���� =
g2�k�,q1

G0�k� − q�1,� − �q�1
− g2A1����

1 − g2�k�,q�1
G0�k� − q�1,� − �q�1

− g2A1�����A2��� − A1����
, �8�

where A1 ,A2 are the functions of �, defined in the Appendix.
The self-energy contains all interaction effects and can be
used to calculate spectral weights, decay rates, etc. in a
straightforward way.25

III. RESULTS

Now we are in the position to derive the decay rate or
lifetime of QPs of HOPG or graphene in the presence of
spin-1 bosonic collective mode. There are some other decay
mechanisms such as electron-hole,11 electron-phonon,26 and
electron-plasmon scatterings.14 In doped graphene, all the
above mechanisms might contribute to the renormalization
of QP properties. However, in HOPG graphite and undoped
graphene there are no plasmons to couple to the electronic
degrees of freedom.

A. Decay rate

The imaginary part of self-energy related to the lifetime
and decay rate of QP,

1

�
� − Im�Tr��,��k�,��� . �9�

We have numerically evaluated the integrals necessary to
get self-energy �8�. In Fig. 1, we have plotted the decay rate
measured in the TRPES experiment of Ref. 10 �triangles�
along with the electron-hole decay mechanisms captured
within the GW approximation �open circles�.11 As can be
seen in this figure, the decay into incoherent electron-hole
pairs within the GW approximation can only account for half
of the experimentally reported QP decay rate. In this figure,
we plot the total decay rate in the presence of the spin-flip
scatterings from a tripled bosonic mode for the coupling val-
ues g=0.25 �filled circles� and g=0.3 �dashed line�. The trip-
let bosonic collective mode has a wide dispersion between
zero and �max�2.1 eV.

As can be seen, a dispersive bosonic collective mode can
account for the missing decay rate in HOPG graphite. The
same result applies to undoped graphene as well. The fact
that the GW approximation falls a factor of 2 behind the
experimentally measured decay rate indicates that in addition
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to incoherent electron-hole decay processes, there should be
another decay channel provided by a coherent bound state of
electron-hole pairs, which is what our phenomenological
Hamiltonian �1� describes. A simple RPA analysis showed
that such a bound state can occur in the triplet channel.8,9

B. Dependence on �max

The dispersion of the triplet bosonic mode is over a wide
energy range from zero to �max�2.1 eV. The shape of the
dispersion and the value of �max in the original work or Refs.
8 and 9 are essentially controlled by the short-range part of
the interaction �Hubbard U�. It was also shown that the long-
range part of the Coulomb interaction does not play a crucial
role in the dispersion of the spin-1 collective mode.9 In the

present calculation, we have fitted the dispersion relation ob-
tained from the RPA analysis of Refs. 8 and 9 with �10
cosine harmonics over the whole Brillouin zone.

In Fig. 2 we explore the dependence of decay rates on the
dispersion bandwidth ��max�. Left panel shows the imaginary
part of the self-energy for various values of the electron-
boson coupling g and for �max=1.4, while the left panel
shows the same result for �max=2.1. As can be seen in both
panels, by increasing the coupling strength g, the decay rate
at a given energy scale increases. Comparison of the left and
right panels for the same values of g shows that with a
smaller width of dispersion ��max�, the bosonic mode leads
to stronger spin-flip scattering. The limit �max→0 can be
thought of as an Einstein-type phonon mode which was stud-
ied within MA�1� in Ref. 24. Smaller �max in our phenom-
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enological Hamiltonian �1� corresponds to larger U in the
Hamiltonian of the original electrons in Ref. 9. Hence the
observation of Fig. 2 can be justified as follows. In terms of
the Hubbard-type Hamiltonian of Ref. 8, larger U naturally
leads to stronger decay rates.

C. Spectral function

Once we calculate the self-energy ��,���� at any approxi-
mation, we are able to immediately calculate the spectral
weight A�k� ,��=− 1

2 Im�Tr G�,��k� ,���. We have plotted the
spectral weight along the high-symmetry cut �-K-M of the
Brillouin zone in Fig. 3. We have plotted the spectral weight
for different energies. Panels �a�–�d� correspond to different
values of g as indicated in the figure caption.

The first point to notice in all panels is that the conelike
dispersion of the Dirac electrons remains quite robust against
the increase in the electron-boson coupling g. To see this
more transparently, in panel �a� we have plotted some
negative-energy spectral functions as well. As can be seen in
panel �d�, large values of coupling g�1 lead to a remarkable
broadening in the quasiparticle peaks. Direct comparison
with ARPES experiments on graphene indicates that g can-
not be as large as g�1.

Negative-energy plots of panel �a� indicates that there is
an asymmetry between the positive-energy states and the
negative-energy states. This is natural, as the collective mode
is an excitation and does not carry negative energies.

IV. CONCLUSION

In this work we considered a phenomenological Hamil-
tonian containing a neutral spin-1 collective mode as a dif-
ferent bosonic branch of excitations predicted to exist in
HOPG and undoped graphene.8 Employing the momentum
average self-energy we showed that such a coherent particle-
hole bound state in the triplet channel can account for a
substantial part of the missing decay rate in TRPES experi-
ment of Ref. 10 in HOPG. Another supporting evidence for
the existence of such a spin-1 collective mode which is a
natural generalization of triplet excitations of ordinary semi-
conductors to the case of semimetallic HOPG comes from
the downward renormalization of vF.16 Apparently phonons
fail to account for such renormalization. Moreover, the re-
markable observation of Bose metal-insulator transition
tuned by the magnetic field17 in HOPG �Ref. 18� and
graphene19 might indicate that there such a spin excitation
branch can have interesting consequences for the behavior of
HOPG and graphene in magnetic fields.
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APPENDIX: GENERALIZATION OF MA(1) FOR SPIN-
FLIP HAMILTONIANS

We start by writing Eq. �4� with explicit spin indices. The
matrix elements of the Green’s function become

G↑,↑�k�,�� = G0�k�,���1 + g�
k�,q�1

F1
↑,↓�k�,q�1, + 1;��� ,

�A1�

G↓,↓�k�,�� = G0�k�,���1 + g�
k�,q�1

F1
↓,↑�k�,q�1,− 1;��� ,

�A2�

G↑,↓�k,�� = G0�k,���g�
k,q1

F1
↑,↑�k,q1,− 1;��� , �A3�

G↓,↑�k�,�� = G0�k�,���g�
k�,q�1

F1
↓,↓�k�,q�1, + 1;��� . �A4�

As can be intuitively seen in Fig. 4, the nondiagonal ele-
ment of the Green’s function should be zero. To see this
more systematically, one writes the one-boson Green’s func-
tion as

�
k�,q�1

F1
↑,↑�k�,q�1,− 1;�� =

G↓,↑�k�,��

gG0�k�,��
. �A5�

Repeating the equation of motion we obtain the two-boson
amplitude

�
q�1,q�2

F2
↑,↓�k�,q�1,q�2,− 1, + 1;��

=
G↓,↑�k�,��

gG0�k�,�� 1

gG0�k�,��
− gG0�k� − q� ,� − ��q���� .

�A6�

Finally for order N+1, we obtain for even N,

(b)(a)

(c) (d)

+1 −1

−1

+1
+1

−1

FIG. 4. First- and second-order Feynman diagrams for the scat-
tering vertex from a spin-1 collective mode. At each vertex the spin
of electron is flipped. Therefore, the incoming and outgoing spins
end up to be identical as in diagrams �a� and �c�. However, if we
insist to have the spin of outgoing state to be opposite to that of
incoming state, some vertices �denoted by �� will not do flip the
spin; that is they will not correspond to scattering from a spin-1
collective mode, as in diagrams �b� and �d�.
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�
k�,q�1,q�2,. . .,q�N+1

FN+1
�,� �k�,q�1,q�2, . . . , + 1,− 1, . . . ;��

= A�k�,q�1,q�2, . . . , + 1,− 1, . . . ;��G↑,↓�k�,�� = 0,

�A7�

and for odd N,

�
k�,q�1,q�2,. . .,q�N+1

FN+1
↑,↓ �k�,q�1,q�2, . . . , + 1,− 1, . . . ;��

= B�k�,q�1,q�2, . . . , + 1,− 1, . . . ;��G↑,↓�k�,�� = 0.

�A8�

The A ,B coefficients for various orders can be seen by in-
spection to be nonzero. This proves that the spin off-diagonal
components of the Green’s function are zero. This can be
seen intuitively in Fig. 4.

To proceed further, we define a modified form of the
bosonic Green’s function in the MA�1� approximation as

fn
�,−��k�,q�1, . . . ,q�n, . . . + 1,− 1, . . . ;��

=
gnFn

�,�−1n���k�,q�1, . . . ,q�n, . . . + 1,− 1, . . . ;��

G�,��k�,��
.

�A9�

By inserting this in Eq. �4� one finds

G�,��k�,�� = ! G0�k�,���1 + g�
k�,q�1

f1
�,−��k�,q�1,1;��G�,��k�,��� ,

�A10�

where the matrix form of the Green’s function is

G�k,�� = �G↑,↑�k�,�� 0

0 G↓,↓�k,��
� . �A11�

Dyson’s equation,

G�,��k�,�� = �� − �k� − ��,��k�,�� + i��−1, �A12�

give the spin diagonal self-energy as

��,���� = �
k�,q�1

f1
�,−��k�,q�1, + 1;�� . �A13�

So the MA�1� self-energy is diagonal and can be casted into
the final form given by Eq. �8�, where

A1��� =
ḡ0,2���

1 −
2ḡ0,3���ḡ0,2���

1−¯

,

A2��� =
2ḡ0,2���

1 −
3ḡ0,3���ḡ0,2���

1−¯

,

ḡ0,n��� = �
k�,q�1,. . .,q�n

G0�k� − �
i

q� i,� − �
i

�q� i� . �A14�
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